مدل مکا نیابی و مسیریابی در زنجیره ی امداد بشردوستانه با در نظر گرفتن قابلیت اطمینان مسیرهای ارتباطی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو

2 دانشیار دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران

3 استادیار دانشکده مهندسی صنایع دانشگاه ازاد اسلامی واحد تهران جنوب

چکیده

بحران ها از واقعیت های اجتناب ناپذیر زندگی بشر هستند. پیشرفت علوم و فناوری اگر چه می تواند به کاهش خسارات و تلفات تا حد زیادی کمک کند، با این وجود نمی تواند به طور کامل از وقوع آن جلوگیری کند یا خسارات مالی و جانی را به صفر برساند. مدیریت بحران یکی از مهم ترین مباحث علمی-کاربردی است که امروزه تمامی کشورها بدان متمایل گشته اند. در این مطالعه فاز پاسخ گویی که با وقوع بحران شروع می شود و مهم ترین فاز مدیریت بحران محسوب می شود، مورد مطالعه قرار می گیرد. عملیات کلیدی مانند عملیات امداد و نجات، تخلیه ی مجروحان و حادثه دیدگان و توزیع اقلام امدادی در این فاز انجام می شود. در این مقاله مکان یابی و مسیریابی مراکز توزیع کالا با در نظر گرفتن قابلیت اطمینان مسیرهای امدادی انجام شده و نیز تخصیص مراکز توزیع به مراکز اسکان موقت انجام می شود. مسئله به صورت یک برنامه ریزی چند هدفه مدل سازی شده است و اهداف زیر را دنبال می کند: ۱. کمینه سازی بیشینه میزان کمبود در هر نقطه ی آسیب دیده؛ ۲. کمینه سازی بیشینه زمان خدمت رسانی توسط وسایل نقلیه ی در دسترس. مدل دو هدفه ی پیشنهادی با روش محدودیت
اپسیلون تعمیم یافته برای مطالعه ی موردی در استان سیچوآن کشور چین حل شده است. نتایج نشان دهنده ی کارایی و کاربردپذیری مدل پیشنهادی برای تصمیم گیری در مورد مکان توزیع کالا است و تخصیص مراکز اسکان موقت و نیز تخصیص بخش های مختلف شبکه ی لجستیک امداد تحت شرایط بحران را نشان می دهد.

کلیدواژه‌ها


1. Bakuli, D. L., & Smith, J. M. (1996). Resource allocation
in statedependent emergency evacuation networks.
European Journal of Operational Research, 89(3),
543-555.
2. Haghani, S. C. O. A. (1997). Testing and evaluation of
a multi commodity multi modal network flow model
for disaster relief management. Journal of Advanced
Transportation, 31(3), 249-282.
3. Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic
programming framework for transportation
planning in disaster response. Journal of the operational
research society , 55(1), 43-53.
4. Akkihal, A. R. (2006). Inventory pre-positioning for
humanitarian operations (Doctoral dissertation,
Massachusetts Institute of Technology).
5. Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007).
Multi-objective optimal planning for designing relief
delivery systems. Transportation Research Part E:
Logistics and Transportation Review, 43(6), 673-686.
6. Eshghi, K, & Najafi, M. (2013). A Logistics Planning
Model to Improve the Response Phase of Earthquake.
International Journal of Industrial Engineering &
Production Management , 23, 401-416.
7. Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics,
11(2), 101-121.
8. Salmeron J. and Apte A. (2009). Stochastic optimization
for natural disaster asset prepositioning. Production
and Operations Management Society , 19(5): 561–574
9. Bozorgi-Amiri, A., Jabalameli, M. S., & Al-e-Hashem,
S. M. (2013). A multi-objective robust stochastic
programming model for disaster relief logistics under
uncertainty. OR spectrum , 35(4), 905-933.
10. Canbolat, M. S., & Von Massow, M. (2011). Locating
emergency facilities with random demand for risk
minimization. Expert Systems with Applications , 38(8),
10099-10106.
11. Hamedi, M., Haghani, A., & Yang, S. (2012). Reliable
transportation of humanitarian supplies in disaster
response: model and heuristic. Procedia-Social and Behavioral
Sciences , 54, 1205-1219.
12. Vahdani, B., Tavakkoli-Moghaddam, R., & Jolai, F.
(2013). Reliable design of a logistics network under
uncertainty: A fuzzy possibilistic-queuing model.
Applied Mathematical Modelling , 37(5), 3254-3268.
13. Arkat, J., Zamani, S., & Qods, P. (2014). Location-
Routing for emergenci facilities considering destruction
probobilities for communication paths in crises.
14. Wang, H., Du, L., & Ma, S. (2014). Multi-objective
open location-routing model with split delivery
for optimized relief distribution in post-earthquake.
Transportation Research Part E: Logistics and
Transportation Review , 69, 160-179.
15. Bozorgi-Amiri, A., & Khorsi, M. (2015). A dynamic
multi-objective location–routing model for relief logistic
planning under uncertainty on demand, travel
time, and cost parameters. The International Journal of
Advanced Manufacturing Technology , 1-16.
16. Ghezavati, V., Soltanzadeh, F., & Hafezalkotob, A.
(2015). Optimization of reliability for a hierarchical
facility location problem under disaster relief situations
by a chance-constrained programming and
robust optimization. Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and Reliability,
229(6), 542-555.
17. Vahdani, B., Veysmoradi, D., Shekari, N., & Mousavi,
S. M. Multi-objective, multi-period location-routing
model to distribute relief after earthquake by considering
emergency roadway repair. Neural Computing
and Applications, 1-20.
18. Xu, J., Wang, Z., Zhang, M., & Tu, Y. (2016). A new
model for a 72-h post-earthquake emergency logistics
location-routing problem under a random fuzzy
environment. Transportation Letters, 1-16.
19. Tavakkoli-Moghaddam, R., Shishegar, S., Siadat, A.,
& Mohammadi, M. (2016). Design of a Reliable Biobjective
Relief Routing Network in the Earthquake
Response Phase. Procedia Computer Science, 102, 74-
81.
20. Glover, F., & Woolsey, E. (1974). Technical note—converting
the 0-1 polynomial programming problem to
a 0-1 linear program. Operations researc h, 22(1), 180-
182.