طراحی شبکه توزیع پایدار کالاهای اضطراری در لجستیک امداد بلایا با درنظرگرفتن هزینه محرومیت با رویکرد عدم قطعیت (مطالعه‌ موردی: سیل 1397 شهرستان ساری)

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه مدیریت بحران-مجتمع دانشگاهی پدافند غیرعامل-دانشگاه صنعتی مالک اشتر

2 دانشجوی دکتری مدیریت بحران دانشگاه صنعتی مالک اشتر

3 گروه مدیریت بحران، مجتمع دانشگاهی پدافند غیرعامل، دانشگاه صنعتی مالک اشتر

چکیده

سوانح طبیعی در مقیاس بزرگ بارها رخ‌داده و منجر به پیامدهای اجتماعی، اقتصادی و زیست‌محیطی شده است. به عبارتی سوانح طبیعی تهدیدی جدی برای توسعه پایدار محسوب می‌ شوند. اخیراً مدل‌ سازی پایدار لجستیک امداد بلایا توجه فزاینده‌ای را به خود جلب کرده است. درنظرگرفتن جنبه‌ های اقتصادی، اجتماعی و زیست‌ محیطی پایداری برای کاهش اثرات منفی فاجعه در مسئله لجستیک امداد بلایا ضروری است. هدف اصلی این پژوهش ارائه یک مدل ریاضی چند هدفه به‌ منظور طراحی شبکه توزیع پایدار کالاهای اضطراری در لجستیک امداد بلایا است. ویژگی اصلی این مدل این است که جنبه‌های اقتصادی، اجتماعی (هزینه محرومیت) و زیست‌ محیطی پایداری را در تابع هدف در نظر می‌ گیرد. با توجه به اینکه عدم قطعیت در ماهیت این مسئله وجود دارد، به‌ منظور مقابله با عدم قطعیت از رویکرد بهینه‌ سازی استوار فازی و برای حل مدل چند هدفه از روش برنامه‌ ریزی آرمانی چند گزینه‌ ای استفاده شده است. به‌ منظور بررسی کارایی مدل یک مطالعه موردی بر اساس داده‌ های واقعی (سیل شهرستان ساری) انجام ‌شده است. در این پژوهش تعداد بهینه مراکز توزیع و مکان هر مرکز توزیع به‌ گونه‌ای تعیین می‌ شوند که هزینه‌ های اقتصادی، اجتماعی و میزان آلایندگی‌ های زیست‌ محیطی به حداقل برسد و هر مرکز توزیع با توجه به ظرفیت ویژه خود به مجموعه‌ ای از نقاط تقاضا با انواع متفاوتی از کالاها خدمت‌ رسانی ‌کند. با استفاده از مدل پیشنهادی ما تصمیم‌ گیرندگان و مدیران قادر به تصمیم‌ گیری‌ های استراتژیکی و تاکتیکی با کمترین هزینه و زمان می‌ شوند و در برنامه‌ ریزی‌ های امداد می‌ توانند ساختار شبکه توزیع را بهبود بخشیده و نارضایتی آسیب‌ دیدگان را کاهش دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sustainable Emergency Goods Distribution Network Design in Disaster Relief Logistic Considering the Deprivation Cost under Uncertainty (Case Study: 2019 flood in Sari city)

نویسندگان [English]

  • mahdi modiri 1
  • samira hasanzadeh 2
  • Mohammad Eskandari 3
1 Full professor at Malek Ashtar University of technology
2 Ph.D student in Crisis Management, Malek Ashtar University of technology
3 Assistant professor at Malek Ashtar University of Technology
چکیده [English]

Large-scale natural disasters have occurred many times and led to social, economic and environmental consequences. In other words, natural disasters are a serious threat to sustainable development. Recently, sustainable modeling of disaster relief logistics has increasingly attracted attention. It is vital to take the economic, social, and environmental aspects into account in the disaster relief logistic problem to reduce the harmful effects of a disaster. The present study aims to develop a multi-objective mathematical programming model for designing a sustainable distribution network of emergency goods in disaster relief logistics. The key feature of this formulation being the fact that it explicitly considers the economic, social (deprivation cost) and environmental aspects of sustainability in the objective function. Considering the inherent uncertainty in this issue a robust fuzzy optimization approach is utilized to deal with the uncertainty. Further, multi-choice goal programming is used to solve the multi-objective model. Finally, a case study was conducted on Sari city, Mazandaran Province, to verify the model performance. In this investigation, the optimal number and location of distribution centers are determined such that the economic, social costs and the environmental pollution level are minimized, and each distribution center provides services concerning its particular capacity to a set of demand points with different types of commodities. Using the proposed model, decision-makers and managers are able to make strategic and tactical decisions with the least cost and time, and in relief planning can enhance the structure of distribution networks and inventory and reduce victims’ dissatisfaction.

کلیدواژه‌ها [English]

  • Sustainable distribution network
  • Emergency goods
  • Disaster relief logistics
  • Deprivation cost
  • Uncertainty
  1. Arab-Kheradmand, J., Ahmadi, S., Baniasadi, A., & Khankeh, H. (2016). Historical Research on Disaster Management Legislation in Iran before Islamic Revolution. Health in Emergencies and Disasters, 1(4), 209-214.
  2. Rashidi Jahan, H., Ebrahimnia, M., Roshani, M., & Hadian, M. (2015). Crisis Preparedness among Clinical Staff: A Brief Survey in an Iranian Context. International Journal of Hospital Research, 4(4), 189-193.

 

  1. Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142, 1108-1118.

 

  1. Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a systematic review. Annals of Operations Research, 223(1), 53-79.

 

  1. Loree, N., & Aros-Vera, F. (2018). Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics. Transportation Research Part E: Logistics and Transportation Review, 116, 1-24.

 

  1. Khayal, D., Pradhananga, R., Pokharel, S., & Mutlu, F. (2015). A model for planning locations of temporary distribution facilities for emergency response. Socio-Economic Planning Sciences, 52, 22-30.
  2. Van Wassenhove, L. N., & Pedraza Martinez, A. J. (2012). Using OR to adapt supply chain management best practices to humanitarian logistics. International Transactions in Operational Research, 19(1-2), 307-322.

 

  1. Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262-280.
  1. Cantillo, V., Serrano, I., Macea, L. F., & Holguín-Veras, J. (2017). Discrete choice approach for assessing deprivation cost in humanitarian relief operations. Socio-Economic Planning Sciences, 63, 33-46.
  2. Akkihal, A. R. (2006). Inventory pre-positioning for humanitarian operations (Doctoral dissertation, Massachusetts Institute of Technology).
  3. Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E: Logistics and Transportation Review, 43(6), 673-686.
  4. Lin, Y. H., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2011). A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-Economic Planning Sciences, 45(4), 132-145.
  1. Berkoune, D., Renaud, J., Rekik, M., & Ruiz, A. (2012). Transportation in disaster response operations. Socio-Economic Planning Sciences, 46(1), 23-32.
  2. Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9-10), 2630-2647.
  3. Lu, M., Ran, L., & Shen, Z. J. M. (2015). Reliable facility location design under uncertain correlated disruptions. Manufacturing & Service Operations Management, 17(4), 445-455.
  4. Zhang, Y., Snyder, L. V., Qi, M., & Miao, L. (2016). A heterogeneous reliable location model with risk pooling under supply disruptions. Transportation Research Part B: Methodological, 83, 151-178.
  5. Rivera-Royero, D., Galindo, G., & Yie-Pinedo, R. (2016). A dynamic model for disaster response considering prioritized demand points. Socio-economic planning sciences, 55, 59-75.
  6. Haghi, M., Ghomi, S. M. T. F., & Jolai, F. (2017). Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. Journal of Cleaner Production, 154, 188-202.

 

  1. Cao, C., Li, C., Yang, Q., Liu, Y., & Qu, T. (2018). A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. Journal of Cleaner Production, 174, 1422-1435.
  2. Rahmani, D., Zandi, A., Peyghaleh, E., & Siamakmanesh, N. (2018). A robust model for a humanitarian relief network with backup covering under disruptions: a real world application. International journal of disaster risk reduction, 28, 56-68.
  3. Liu, Y., Lei, H., Wu, Z., & Zhang, D. (2019). A robust model predictive control approach for post-disaster relief distribution. Computers & Industrial Engineering, 135, 1253-1270.
  4. Cotes, N., & Cantillo, V. (2019). Including deprivation costs in facility location models for humanitarian relief logistics. Socio-Economic Planning Sciences, 65, 89-100.
  5. Rodriguez, N. P. (2011). Inventory allocation models for post-disaster humanitarian logistics with explicit consideration of deprivation costs. Rensselaer Polytechnic Institute.
  6. Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262-280.
  7. Brown, R. G. (1967). WG Runciman, Relative Deprivation and Social Justice (Book Review). International Journal of Comparative Sociology, 8, 124.
  8. Bayés, R., Limonero, J. T., Barreto, P., & Comas, M. D. (1997). A way to screen for suffering in palliative care. Journal of Palliative care, 13(2), 22-26.
  9. Holguín-Veras, J., Amaya-Leal, J., Cantillo, V., Van Wassenhove, L. N., Aros-Vera, F., & Jaller, M. (2016). Econometric estimation of deprivation cost functions: A contingent valuation experiment. Journal of Operations Management, 45, 44-56.
  10. Williams, H. C. (1977). On the formation of travel demand models and economic evaluation measures of user benefit. Environment and planning A, 9(3), 285-344.
  11. Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
  12. Inuiguchi, M., & Ramık, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy sets and systems, 111(1), 3-2.
  1. Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, 662-673.
  1. Chang, C. T. (2011). Multi-choice goal programming with utility functions. European Journal of Operational Research, 215(2), 439-445.
  2. Mohammed, F., Selim, S. Z., Hassan, A., & Syed, M. N. (2017). Multi-period planning of closed-loop supply chain with carbon policies under uncertainty. Transportation Research Part D: Transport and Environment, 51, 146-172.
  3. Columbia, B. (2012). 2012 BC Best Practices Methodology for Quantifying Greenhouse Gas Emissions Including Guidance for Public Sector Organizations, Local Governments and Community Emissions. Ministry of Environment.
  4. Jun, P., Gillenwater, M., & Barbour, W. (2002). CO2, CH4, and N2 O emissions from transportation-water-borne-navigation [Background paper]. Good practice guidance and uncertainty management in national greenhouse gas inventories, 71-92.
  5. Hicks, C. R. (1973). Fundamental Concepts in the Design of Experiments Holt. Rinehart and Winston, New York.
  6. Ortúzar, J. D. D., & Willumsen, L. G. (2011). Simplified Transport Demand Models. Modelling Transport, 4th ed.; John Wiley & Sons, Ltd.: Chichester, UK.
  7. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: analysis and applications. Cambridge university press.