ارائه الگوی تاب‌آوری صنعت ساخت‌وساز با بهره‌گیری از مدل‌سازی اطلاعات ساختمان BIM

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 سایر/سایر

3 مدیر قطب علمی مهندسی نقشه برداری در مقابله با سوانح طبیعی

4 رییس پدافند غیر عامل و مدیریت بحران شرکت ملی نفت ایران

چکیده

هدف این پژوهش ارائه الگوی جامع تاب‌آوری در صنعت ساختمان است. داده‌های اولیه در قالب پرسشنامه پس از جمع‌آوری گروه‌بندی، تجزیه و تحلیل و حذف شاخص‌های مازاد از 64 شاخص اولیه‌ از طریق مدل‌ آماری تحلیل عاملی بر اساس آنالیز مؤلفه اصلی (PCA) استخراج شد. مؤلفه‌های استخراج‌شده در قالب 6 فاز و 46 زیرمعیار قرار گرفته‌اند. با توجه به بررسی مطالعات انجام‌شده در سازه‌های نوساز در تمای فازهای صنعت ساخت‌وساز به‌جز در حوزه فاز عملیاتی (بخش اجرا) مدل‌سازی اطلاعات ساختمان فرآیندی مناسب جهت بهبود و تسهیل در عملکرد است. در مورد سازه‌های موجود فاز مدیریت ساخت، بخش سازه، فاز مدیریت ساخت، بخش معماری، فاز تعمیر و نگهداری و فاز مدیریت پایان عمر پروژه مدل‌سازی اطلاعات ساختمان عملکردی خوب داشته و در سایر فازهای سازه‌های موجود نقش BIM  کم‌رنگ‌تر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Providing resiliency pattern in construction industry implementing building information model

نویسندگان [English]

  • behnam salehi 1
  • Mohammad Ali Nekooie 2
  • Alireza Ardalan 3
  • Alireza Ansarifard 4
1 Malek Ashtar University of Technology
3 Uni. Prof.
4 Head of passive defense and crisis management of NIOC
چکیده [English]

In this research, field studies have been used in the field of statistical modeling and building information modeling. Grouping, the study of surplus indicators from 64 primary indicators was performed through a factor analysis model based on the principal component analysis (PCA). The extracted components were grouped in the form of 6 phases and 46 sub-criteria. Then using the Delphi model, the resilience capacity of each resilience index of the construction industry was investigated. The results showed that in all six phases defined in the comprehensive resilience model, the absorption capacity has a high participation rate. On the other hand, the matching capacity in the end-of-life management phase, the maintenance phase, the operational phase in the time and phase of the initial studies, and the In particular, the restoration capacity according to the results in all phases, except for the phase of the initial studies, shows an acceptable percentage of participation. In the sequel, one of the most important goals of the research, namely the operation of the resilience indicators or the key factors of success, is to be prioritized. One The most powerful key factors of success in resilience, information modeling Building (BIM) was investigated. According to the study of studies in new structures, the construction of the phase of the phase, except for the operational phase (operation section), due to the type of indicators in this phase, BIM is a suitable process for improving performance. Regarding existing structures, the management phase of the construction, the structural part, the construction phase, the architectural part, the maintenance phase, and the management phase of the end of the project life are good, and in the remaining phase of the existing structures, the role of the BIM is dimmer

کلیدواژه‌ها [English]

  • resilience
  • BIM
  • Building industry
  • PCA
  1. Ian Davis & Yasamin O. Izadkhah, Building resilient urban communities, open house international Vol 31, No.1, March 2006

 

  1. HOLLING, C. S. & GUNDERSON, L. H. (2002). Resilience and adaptive cycles. Panarchy: Understanding transformations in human and natural systems, 25-62.
  2. ADGER, W. N., HUGHES, T. P., FOLKE, C., CARPENTER, S. R. & ROCKSTRÖM, J. (2005). Social-ecological resilience to coastal disasters. Science, 309, 1036-1039.
    1. CUTTER, S. L., BURTON, C. G. & EMRICH, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management, 7(1), 1-24.
    2. MOBERG, F. & HAUGE SIMONSEN, S. (2011). What is Resilience? An introduction to social-ecological research. Stockholm: Stockholm Resilience Centre, 1-20.
    3. BOON, H. J., COTTRELL, A., KING, D., STEVENSON, R. B. & MILLAR, J. (2012). Bronfenbrenner’s bioecological theory for modelling community resilience to natural disasters. Natural Hazards, 60, 381-408.
    4. TURNER, M. D. (2013). Political ecology I an alliance with resilience? Progress in Human Geography, 0309132513502770. Retrieved from: http://phg.sagpub.com /conten t/early/2013/09/13/0309132513502770.
    5. KUTUM, I. & AL-JABERI, K. (2015). Jordan Banks Financial Soundness Indicators. International Journal of Finance & Banking Studies (ISSN: 2147-4486), 4, 44-56.
    6. Kimhi, S.; Shamai, M. (2004). Community Resilience and the Impact of Stress, Adult Response to Israel’s Withdrawal from Lebanon. Journal of Community Psychology, 32 (4), 439-451.
    7. Jones, T. et al. (2011). Regional Planning and Resilient Futures: Destination Modeling and Tourism Development—Case of the Ningaloo Coastal Region in Western Australia. Planning Practice and Research, 26 (4), 393-415.
      1. Zhang, X.; Yi, L.; Zhao, D. (2013). Community-Based Disaster Management: A Review of Progress in China. Natural Hazards, 65 (3), 2215-2239
        1. Foster, K. A. (2007). A Case Study Approach to Understanding Regional Resilience. Institute of Urban & Regional Development.
        2. Dawley, S.; Pike, A.; Tomaney, J. (2010). Towards the Resilient Region? : Policy Activism and Peripheral Region Development. Spatial Economic Research Center.
        3. Krygiel, Eddy, and Bradley Nies. "Green BIM." Successful Sustainable Design with Building Information Modeling (2008).
  3. Barlish, K., & Sullivan, K. (2012). How to measure the benefits of BIM— A case study approach. Automation in construction, 24, 149-159.
  4. Khanzode, A., Fischer, M., & Reed, D. (2008). Benefits and lessons learned of implementing building virtual design and construction (VDC) technologies for coordination of mechanical, electrical, and plumbing (MEP) systems on a large healthcare project. Journal of Information Technology in Construction (ITcon), 13(22), 324-342.
  5. Kuprenas, J. A., & Mock, C. S. (2009). Collaborative BIM modeling case study—Process and results. In Computing in Civil Engineering (2009) (pp. 431-441).
  6. Gil, N., Tommelein, I. D., Stout, A., & Garrett, T. (2005). Embodying product and process flexibility to cope with challenging project deliveries. Journal of construction engineering and management, 131(4), 439-448.
    1. Porwal, A., & Hewage, K. N. (2013). Building Information Modeling (BIM) partnering framework for public construction projects. Automation in Construction, 31, 204-214.
  7. Suermann, P. C. (2009). Evaluating the impact of building information modeling (BIM) on construction. University of Florida.
  8. Chelson, D. E. (2010). The effects of building information modeling on construction site productivity. University of Maryland, College Park.
  9. Sertyesilisik, B. (2017). Building Information Modeling as a Tool for Enhancing Disaster Resilience of the Construction Industry. TRANSACTIONS of the VŠB–Technical University of Ostrava, Safety Engineering Series, 12(1), 9-18.‏
  10. Drogemuller, R. (2015). BIM support for disaster response. In Proceedings of the 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction (8-10 July 2013) (Vol. 1, No. 1, pp. 391-405). Queenland University of Technology.‏
  11. Sertyesilisik, B., & Kivircik, I. (2017). Integrated BIM Usage in Construction Project Management: As a Way of Enhancing Sustainability and Lean Performance of Construction Industry. Integrated Building Information Modelling, 204.‏
  12. Sertyesilisik, B., & Kivircik, I. (2017). Integrated BIM Usage in Construction Project Management: As a Way of Enhancing Sustainability and Lean Performance of Construction Industry. Integrated Building Information Modelling, 204.‏
  13. Wehbe, F., Al Hattab, M., & Hamzeh, F. (2016). Exploring associations between resilience and construction safety performance in safety networks. Safety science, 82, 338-351.‏