مکان‌یابی و مسیریابی تسهیلات اورژانسی با فرض احتمال خرابی مسیرهای ارتباطی در زمان بحران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی صنایع، دانشگاه کردستان

2 دانشجوی دکتری مهندسی صنایع، دانشگاه کردستان.

3 دانش‌آموخته کارشناسی ارشد مهندسی صنایع، دانشگاه کردستان.

چکیده

برنامه‌ریزی برای پیشگیری از وقوع حوادث از یک سو و تصمیم‌گیری‌های درست برای کاهش آثار ناشی از وقوع بحران از سوی دیگر اهداف کلیدی مدیریت بحران‌اند. در این تحقیق، مسئله‌ی مکان‌یابی و مسیریابی تسهیلات اضطراری با در نظر گرفتن احتمال خرابی مسیرهای ارتباطی و ازدحام تسهیلات اورژانسی در زمان وقوع بحران بررسی می‌گردد؛ بدین منظور، یک مدل برنامه‌ریزی ریاضی دوهدفه برای انتخاب مکان استقرار تسهیلات، تخصیص تسهیلات به مصدومان و تعیین مسیرهای ارتباطی ارائه می‌شود. در مدل ریاضی ارائه‌شده، فرد مصدوم در صورتی می‌تواند خدمات اورژانسی را دریافت کند که حداقل یک سرور آزاد در تسهیل متناظر، مستقر و مسیر ارتباطی از تسهیل تا مکان وی تخریب نشده باشد. توابع هدف مدل ارائه‌شده شامل کمینه کردن مجموع میزان مصدومان پوشش‌نیافته و کمینه کردن میانگین زمان‌های سفر در واحد زمان است. برای حل مسئله‌ی مورد بررسی، دو الگوریتم حل شامل الگوریتم دقیق محدودیت اپسیلون و الگوریتم فراابتکاری ژنتیک چندهدفه ارائه می‌گردد. صحت مدل ریاضی و کارایی الگوریتم‌های ارائه‌شده از طریق ارائه‌ی مثالی عددی ارزیابی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Location-routing for emergency facilities considering destruction probabilities for communication paths in crises

نویسندگان [English]

  • Jamal Arkat 1
  • Shokoufeh Zamani 2
  • Parak Qods 3
1 Assoc. Prof., Department of Industrial Engineering, University of Kurdistan, Kurdistan, Iran
2 PhD Student of Industrial Engineering, University of Kurdistan, Kurdistan, Iran.
3 MSc in Industrial Engineering, University of Kurdistan, Kurdistan, Iran.
چکیده [English]

Planning to prevent and respond to disasters are two key aims of the crisis management.  This paper tries to location-routing facilities considering destruction probabilities for communication paths and congestion in facilities, due to the crises. Thus, a bi-objective model is developed to determine the location emergency facilities, assignment of injuries and routing of emergency vehicles. An injury can receive emergency service if there is at least a free server in corresponding facility and also, the route between its location and related facility is not destructed. The objective functions of the proposed model are the minimization of the rate of injuries not being covered and the minimization of the average travelling times per a time unit. The proposed model was solved using two solution procedures, including ɛ-constraint method and a multi-objective genetic algorithm. The accuracy of the proposed model and the performance of the proposed algorithms are evaluated using a case study.

کلیدواژه‌ها [English]

  • crisis management
  • Location-routing
  • Emergency facilities
  • Queueing systems
  • ɛ-constraint method
  1. Toregas, C. et al. (1971). The Location of Emergency Service Facilities. Operations Research, 19 (6), 1363-1373.
  2. Church, R.; Velle, C. R. (1974). The Maximal Covering Location Problem. Papers in Regional Science, 32 (1), 101-118.
  3. Mahmud, A. R.; Indriasari, V. (2009). Facility Location Models Development to Maximize Total Service Area. Theoretical and Empirical Researches in Urban Management, 87.
  4. Chung, C. H.; Schilling, D. A.; Carbone, R. (1983). The Capacitated Maximal Covering Problem: A Heuristic. Proceedings of Fourteenth Annual Pittsburgh Conference on Modeling and Simulation, 1423-1428.
  5. Pirkul, H.; Schilling, D. A. (1991). The Maximal Covering Location Problem with Capacities on Total Workload. Management Science, 37 (2), 233-248.
  6. Yin, P.; Mu, L. (2012). Modular Capacitated Maximal Covering Location Problem for the Optimal Siting of Emergency Vehicles. Applied Geography, 34, 247-254.
  7. Daskin, M. S. (1983). A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science, 17 (1), 48-70.
  8. ReVelle, C.; Hogan, K. (1989). The Maximum Availability Location Problem. Transportation Science, 23 (3), 192-200.
  9. Sorensen, P.; Church, R. (2010). Integrating Expected Coverage and Local Reliability for Emergency Medical Services Location Problems. Socio-Economic Planning Sciences, 44 (1), 8-18.

10. Repede, J. F.; Bernardo, J. J. (1994). Developing and Validating a Decision Support System for Locating Emergency Medical Vehicles in Louisville, Kentucky. European Journal of Operational Research, 75 (3), 567-581.

11. Berman, O.; Larson, R. C.; Chiu, S. S. (1985). Optimal Server Location on a Network Operating as an M/G/1 Queue. Operations Research, 33 (4), 746-771.

12. Marianov, V.; ReVelle, C. (1996). The Queueing Maximal Availability Location Problem: A Model for the Siting of Emergency Vehicles.  European Journal of Operational Research, 93 (1), 110-120.

13. Teimoury, E. et al. (2011). Two-Facility Location Problem with Infinite Retrial Queue. International Journal of Strategic Decision Sciences (IJSDS), 2 (3), 38-54.

14. Larson, R. C. (1974). A Hypercube Queuing Model for Facility Location and Redistricting in Urban Emergency Services. Computers & Operations Research, 1 (1), 67-95.

  1. 15.  Atkinson, J. B. et al. (2008). A Hypercube Queueing Loss Model with Customer-Dependent Service Rates. European Journal of Operational Research, 191 (1), 223-239.

16. Brandeau, M. L.; Larson, R. C. (1986). Extending and Applying the Hypercube Queueing Model to Deploy Ambulances in Boston. National Emergency Training Center.

17. Burwell, T. H.; Jarvis, J. P.; McKnew, M. A. (1993). Modeling Co-Located Servers and Dispatch Ties in the Hypercube Model. Computers & Operations Research, 20 (2), 113-119.

18. Contreras, I.; Fernández, E.; Reinelt, G. (2012). Minimizing the Maximum Travel Time in a Combined Model of Facility Location and Network Design. Omega, 40 (6), 847-860.

19. Ehrgott, M. (2005). Multicriteria Optimization. Berlin: Springer, vol. 2.

20. Haimes, Y. Y.; Ladson, L. S.; Wismer, D. A. (1971). Bicriterion Formulation of Problems of Integrated System Identification and System Optimization. IEEE Transactions on Systems Man and Cybernetics, (3), 296-297.

21. Chankong, V.; Haimes, Y. Y. (1983). Multiobjective Decision Making: Theory and. Methodology. New York: Elsevier Science Publishing Co., Inc.

22. Bérubé, J. F.; Gendreau, M.; Potvin, J. Y. (2009). An Wxact ϵ-Constraint Method for Bi-Objective Combinatorial Optimization Problems: Application to the Traveling Salesman Problem with Profits. European Journal of Operational Research, 194 (1), 39-50.

23. Holland, J. (1992). Adaptation in Natural and Artificial Systems. Second Edition, University of Michigan: MIT Press.

24. Srinivas, N.; Deb, K. (1995). Multiobjective Optimization Using Nondominated Sorting Genetic Algorithms. Evol. Comput. 2 (3), 221-248.

25. Deb, K.; Pratap, A.; Agarwal, S. (2002). Meyarivan, T. A. M. T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evol. Comput. 6 (2), 182-197.

26. Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold New York.