مکان‌یابی و مسیریابی تسهیلات اورژانسی با فرض احتمال خرابی مسیرهای ارتباطی در زمان بحران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی صنایع، دانشگاه کردستان

2 دانشجوی دکتری مهندسی صنایع، دانشگاه کردستان.

3 دانش‌آموخته کارشناسی ارشد مهندسی صنایع، دانشگاه کردستان.

چکیده

برنامه‌ریزی برای پیشگیری از وقوع حوادث از یک سو و تصمیم‌گیری‌های درست برای کاهش آثار ناشی از وقوع بحران از سوی دیگر اهداف کلیدی مدیریت بحران‌اند. در این تحقیق، مسئله‌ی مکان‌یابی و مسیریابی تسهیلات اضطراری با در نظر گرفتن احتمال خرابی مسیرهای ارتباطی و ازدحام تسهیلات اورژانسی در زمان وقوع بحران بررسی می‌گردد؛ بدین منظور، یک مدل برنامه‌ریزی ریاضی دوهدفه برای انتخاب مکان استقرار تسهیلات، تخصیص تسهیلات به مصدومان و تعیین مسیرهای ارتباطی ارائه می‌شود. در مدل ریاضی ارائه‌شده، فرد مصدوم در صورتی می‌تواند خدمات اورژانسی را دریافت کند که حداقل یک سرور آزاد در تسهیل متناظر، مستقر و مسیر ارتباطی از تسهیل تا مکان وی تخریب نشده باشد. توابع هدف مدل ارائه‌شده شامل کمینه کردن مجموع میزان مصدومان پوشش‌نیافته و کمینه کردن میانگین زمان‌های سفر در واحد زمان است. برای حل مسئله‌ی مورد بررسی، دو الگوریتم حل شامل الگوریتم دقیق محدودیت اپسیلون و الگوریتم فراابتکاری ژنتیک چندهدفه ارائه می‌گردد. صحت مدل ریاضی و کارایی الگوریتم‌های ارائه‌شده از طریق ارائه‌ی مثالی عددی ارزیابی می‌شود.

کلیدواژه‌ها


  1. Toregas, C. et al. (1971). The Location of Emergency Service Facilities. Operations Research, 19 (6), 1363-1373.
  2. Church, R.; Velle, C. R. (1974). The Maximal Covering Location Problem. Papers in Regional Science, 32 (1), 101-118.
  3. Mahmud, A. R.; Indriasari, V. (2009). Facility Location Models Development to Maximize Total Service Area. Theoretical and Empirical Researches in Urban Management, 87.
  4. Chung, C. H.; Schilling, D. A.; Carbone, R. (1983). The Capacitated Maximal Covering Problem: A Heuristic. Proceedings of Fourteenth Annual Pittsburgh Conference on Modeling and Simulation, 1423-1428.
  5. Pirkul, H.; Schilling, D. A. (1991). The Maximal Covering Location Problem with Capacities on Total Workload. Management Science, 37 (2), 233-248.
  6. Yin, P.; Mu, L. (2012). Modular Capacitated Maximal Covering Location Problem for the Optimal Siting of Emergency Vehicles. Applied Geography, 34, 247-254.
  7. Daskin, M. S. (1983). A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science, 17 (1), 48-70.
  8. ReVelle, C.; Hogan, K. (1989). The Maximum Availability Location Problem. Transportation Science, 23 (3), 192-200.
  9. Sorensen, P.; Church, R. (2010). Integrating Expected Coverage and Local Reliability for Emergency Medical Services Location Problems. Socio-Economic Planning Sciences, 44 (1), 8-18.

10. Repede, J. F.; Bernardo, J. J. (1994). Developing and Validating a Decision Support System for Locating Emergency Medical Vehicles in Louisville, Kentucky. European Journal of Operational Research, 75 (3), 567-581.

11. Berman, O.; Larson, R. C.; Chiu, S. S. (1985). Optimal Server Location on a Network Operating as an M/G/1 Queue. Operations Research, 33 (4), 746-771.

12. Marianov, V.; ReVelle, C. (1996). The Queueing Maximal Availability Location Problem: A Model for the Siting of Emergency Vehicles.  European Journal of Operational Research, 93 (1), 110-120.

13. Teimoury, E. et al. (2011). Two-Facility Location Problem with Infinite Retrial Queue. International Journal of Strategic Decision Sciences (IJSDS), 2 (3), 38-54.

14. Larson, R. C. (1974). A Hypercube Queuing Model for Facility Location and Redistricting in Urban Emergency Services. Computers & Operations Research, 1 (1), 67-95.

  1. 15.  Atkinson, J. B. et al. (2008). A Hypercube Queueing Loss Model with Customer-Dependent Service Rates. European Journal of Operational Research, 191 (1), 223-239.

16. Brandeau, M. L.; Larson, R. C. (1986). Extending and Applying the Hypercube Queueing Model to Deploy Ambulances in Boston. National Emergency Training Center.

17. Burwell, T. H.; Jarvis, J. P.; McKnew, M. A. (1993). Modeling Co-Located Servers and Dispatch Ties in the Hypercube Model. Computers & Operations Research, 20 (2), 113-119.

18. Contreras, I.; Fernández, E.; Reinelt, G. (2012). Minimizing the Maximum Travel Time in a Combined Model of Facility Location and Network Design. Omega, 40 (6), 847-860.

19. Ehrgott, M. (2005). Multicriteria Optimization. Berlin: Springer, vol. 2.

20. Haimes, Y. Y.; Ladson, L. S.; Wismer, D. A. (1971). Bicriterion Formulation of Problems of Integrated System Identification and System Optimization. IEEE Transactions on Systems Man and Cybernetics, (3), 296-297.

21. Chankong, V.; Haimes, Y. Y. (1983). Multiobjective Decision Making: Theory and. Methodology. New York: Elsevier Science Publishing Co., Inc.

22. Bérubé, J. F.; Gendreau, M.; Potvin, J. Y. (2009). An Wxact ϵ-Constraint Method for Bi-Objective Combinatorial Optimization Problems: Application to the Traveling Salesman Problem with Profits. European Journal of Operational Research, 194 (1), 39-50.

23. Holland, J. (1992). Adaptation in Natural and Artificial Systems. Second Edition, University of Michigan: MIT Press.

24. Srinivas, N.; Deb, K. (1995). Multiobjective Optimization Using Nondominated Sorting Genetic Algorithms. Evol. Comput. 2 (3), 221-248.

25. Deb, K.; Pratap, A.; Agarwal, S. (2002). Meyarivan, T. A. M. T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evol. Comput. 6 (2), 182-197.

26. Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold New York.