مدل بهینه‏ سازی امکانی استوار برای شبکه‏ ی توزیع اقلام امدادی تحت عدم قطعیت

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

یکی از مهم‏ترین مسائل در فاز پاسخ به بحران، تأمین تقاضای اقلام امدادی مورد نیاز مناطق آسیب‏ دیده است که به‏ علت نامشخص بودن میزان تقاضا، مشکلات بسیاری در این زمینه ایجاد می‏‏‏کند.
در این مقاله، یک مدل برنامه ‏ریزی امکانی استوار برای مسئله‏ ی مسیریابی و زمان‏بندی برای شبکه‏ ی توزیع اقلام امدادی تحت عدم قطعیت تقاضا، ارائه می‏شود. در فرایند توزیع اقلام امدادی، امکان خدمت‏ دهی به هر منطقه‏ ی حادثه‏ دیده توسط چندین وسیله ‏ی امدادی و محدودیت پنجره‏ ی زمانی در نظر گرفته شده است. هدف مدل پیشنهادی، کمینه‏ سازی کل زمان رسیدن وسایل امدادی به مناطق حادثه دیده بیان شده است.
برای نمایش کاربردپذیری مدل ارائه شده، منطقه‏ ی چهار شهر تهران مورد بررسی قرار گرفته و مدل بر روی آن اجرا گردیده است. سرانجام برای بررسی پایداری جواب‏ های مدل بهینه‏ سازی استوار، نتایج حاصل از حل این مدل با مدل قطعی شبیه‏ سازی شده تحت نمونه مسائل مختلف مقایسه می‏شود.

کلیدواژه‌ها


عنوان مقاله [English]

A robust possibilistic optimization model to relief commodities distribution network under uncertainty

نویسندگان [English]

  • Fatemeh Sabouhi 1
  • Armin Jabbarzadeh 2
1 Phd student, Dept. of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
2 Assistant Professor, School of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
چکیده [English]

One of the most important issues in disaster response phase is to supply the relief items which is needed by affected areas. The uncertainty of this demand causes many problems.
This paper presents a novel robust possibilistic programming model for a routing and scheduling problem in a relief commodities distribution network under demand uncertainty. In relief commodities distribution operations, the possibility of servicing each affected area by multiple vehicles and time window constraint have been considered. The objective of the proposed model is to reduce the total time required by the relief vehicles to reach the affected areas.
The fourth region of Tehran city as a case study is provided to illustrate the performance and applicability of the proposed model. Finally, to assess the robustness of the solutions obtained by the novel robust optimization model, they are compared to those generated by the deterministic mixed-integer linear programming model in a number of realizations under different test problems.

کلیدواژه‌ها [English]

  • Robust possibilistic programming model
  • Relief Commodities
  • Time Window
  • Routing
  • Scheduling
1. Nolz, P. C., Semet, F., & Doerner, K. F. (2011). Risk approaches for delivering disaster relief supplies. OR spectrum, 33(3), 543-569. 2. Abdelgawad, H., & Abdulhai, B. (2011). Large-scale evacuation using subway and bus transit: approach and application in city of Toronto. Journal of Transportation Engineering, 138(10), 1215-1232. 3. Bish, D. R. (2011). Planning for a bus-based evacuation. OR spectrum, 33(3), 629-654. 4. Hamedi, M., Haghani, A., & Yang, S. (2012). Reliable transportation of humanitarian supplies in disaster response: model and heuristic. Procedia-Social and Behavioral Sciences, 54, 1205-1219. 5. Wohlgemuth, S., Oloruntoba, R., & Clausen, U. (2012). Dynamic vehicle routing with anticipation in disaster relief. Socio-Economic Planning Sciences, 46(4), 261-271. 6. Lee, K., Lei, L., Pinedo, M., & Wang, S. (2013). Operations scheduling with multiple resources and transportation considerations. International Journal of Production Research, 51(23-24), 7071-7090. 7. Lee, K., Lei, L., & Dong, H. (2013). A Solvable Case of Emergency Supply Chain Scheduling Problem with Multi-stage Lead Times. Journal of Supply Chain and Operations Management, 11(2), 30. 8. Pramudita, A., Taniguchi, E., & Qureshi, A. G. (2014). Location and Routing Problems of Debris Collection Operation after Disasters with Realistic Case Study. Procedia-Social and Behavioral Sciences, 125, 445-458. 9. Özdamar, L., Aksu, D. T., & Ergüneş, B. (2014). Coordinating debris cleanup operations in post disaster road networks. Socio-Economic Planning Sciences, 48(4), 249-262. 10. Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & Operations Research, 42, 25-39. 11. Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation Research Part E: Logistics and Transportation Review, 69, 160-179. 12. Moshref-Javadi, M., & Lee, S. (2016). The Latency Location-Routing Problem. European Journal of Operational Research. 13. Wex, F., Schryen, G., & Neumann, D. (2012). Operational emergency response under informational uncertainty: a fuzzy optimization model for scheduling and allocating rescue units. 14. Gan, X., Wang, Y., Yu, Y., & Niu, B. (2013). An emergency vehicle scheduling problem with time utility based on particle swarm optimization Intelligent Computing Theories and Technology (pp. 614-623): Springer. 15. Caunhye, A. M., Zhang, Y., Li, M., & Nie, X. (2015). A location-routing model for prepositioning and distributing emergency supplies. Transportation Research Part E: Logistics and Transportation Review. 16. Rennemo, S. J., Rø, K. F., Hvattum, L. M., & Tirado, G. (2014). A three-stage stochastic facility routing model for disaster response planning. Transportation Research Part E: Logistics and Transportation Review, 62, 116-135. 17. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, 206, 1-20. 18. Zahiri, B., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2014). A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty. Computers & Industrial Engineering, 74, 139-148. 19. Inuiguchi, M., & Ramık, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111(1), 3-28. 20. Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 227-237. 21. Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24(3), 279-300. 22. Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81-86.