مدل بهینه‏ سازی امکانی استوار برای شبکه‏ ی توزیع اقلام امدادی تحت عدم قطعیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

یکی از مهم‏ترین مسائل در فاز پاسخ به بحران، تأمین تقاضای اقلام امدادی مورد نیاز مناطق آسیب‏ دیده است که به‏ علت نامشخص بودن میزان تقاضا، مشکلات بسیاری در این زمینه ایجاد می‏‏‏کند.
در این مقاله، یک مدل برنامه ‏ریزی امکانی استوار برای مسئله‏ ی مسیریابی و زمان‏بندی برای شبکه‏ ی توزیع اقلام امدادی تحت عدم قطعیت تقاضا، ارائه می‏شود. در فرایند توزیع اقلام امدادی، امکان خدمت‏ دهی به هر منطقه‏ ی حادثه‏ دیده توسط چندین وسیله ‏ی امدادی و محدودیت پنجره‏ ی زمانی در نظر گرفته شده است. هدف مدل پیشنهادی، کمینه‏ سازی کل زمان رسیدن وسایل امدادی به مناطق حادثه دیده بیان شده است.
برای نمایش کاربردپذیری مدل ارائه شده، منطقه‏ ی چهار شهر تهران مورد بررسی قرار گرفته و مدل بر روی آن اجرا گردیده است. سرانجام برای بررسی پایداری جواب‏ های مدل بهینه‏ سازی استوار، نتایج حاصل از حل این مدل با مدل قطعی شبیه‏ سازی شده تحت نمونه مسائل مختلف مقایسه می‏شود.

کلیدواژه‌ها


1. Nolz, P. C., Semet, F., & Doerner, K. F. (2011). Risk approaches for delivering disaster relief supplies. OR spectrum, 33(3), 543-569. 2. Abdelgawad, H., & Abdulhai, B. (2011). Large-scale evacuation using subway and bus transit: approach and application in city of Toronto. Journal of Transportation Engineering, 138(10), 1215-1232. 3. Bish, D. R. (2011). Planning for a bus-based evacuation. OR spectrum, 33(3), 629-654. 4. Hamedi, M., Haghani, A., & Yang, S. (2012). Reliable transportation of humanitarian supplies in disaster response: model and heuristic. Procedia-Social and Behavioral Sciences, 54, 1205-1219. 5. Wohlgemuth, S., Oloruntoba, R., & Clausen, U. (2012). Dynamic vehicle routing with anticipation in disaster relief. Socio-Economic Planning Sciences, 46(4), 261-271. 6. Lee, K., Lei, L., Pinedo, M., & Wang, S. (2013). Operations scheduling with multiple resources and transportation considerations. International Journal of Production Research, 51(23-24), 7071-7090. 7. Lee, K., Lei, L., & Dong, H. (2013). A Solvable Case of Emergency Supply Chain Scheduling Problem with Multi-stage Lead Times. Journal of Supply Chain and Operations Management, 11(2), 30. 8. Pramudita, A., Taniguchi, E., & Qureshi, A. G. (2014). Location and Routing Problems of Debris Collection Operation after Disasters with Realistic Case Study. Procedia-Social and Behavioral Sciences, 125, 445-458. 9. Özdamar, L., Aksu, D. T., & Ergüneş, B. (2014). Coordinating debris cleanup operations in post disaster road networks. Socio-Economic Planning Sciences, 48(4), 249-262. 10. Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & Operations Research, 42, 25-39. 11. Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation Research Part E: Logistics and Transportation Review, 69, 160-179. 12. Moshref-Javadi, M., & Lee, S. (2016). The Latency Location-Routing Problem. European Journal of Operational Research. 13. Wex, F., Schryen, G., & Neumann, D. (2012). Operational emergency response under informational uncertainty: a fuzzy optimization model for scheduling and allocating rescue units. 14. Gan, X., Wang, Y., Yu, Y., & Niu, B. (2013). An emergency vehicle scheduling problem with time utility based on particle swarm optimization Intelligent Computing Theories and Technology (pp. 614-623): Springer. 15. Caunhye, A. M., Zhang, Y., Li, M., & Nie, X. (2015). A location-routing model for prepositioning and distributing emergency supplies. Transportation Research Part E: Logistics and Transportation Review. 16. Rennemo, S. J., Rø, K. F., Hvattum, L. M., & Tirado, G. (2014). A three-stage stochastic facility routing model for disaster response planning. Transportation Research Part E: Logistics and Transportation Review, 62, 116-135. 17. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, 206, 1-20. 18. Zahiri, B., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2014). A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty. Computers & Industrial Engineering, 74, 139-148. 19. Inuiguchi, M., & Ramık, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111(1), 3-28. 20. Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 227-237. 21. Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24(3), 279-300. 22. Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81-86.