راهبردهای پایدار تکاملی دفاع و حمله برای اهداف وابسته و چندحالته با رویکرد قابلیت اطمینان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پیام نور

2 دانشگاه شاهد

3 مدیر مرکز تحقیقات مهندسی صنایع

چکیده

برنامه ریزی راهبردهای مفید و پایدار، یکی از مهم ترین اهداف سازمان ها برای دفاع از سیستم های حساس است. در این تحقیق،
مدل سازی برای بهینه یابی سرمایه گذاری دفاع و حمله ی سیستم های پیچیده در نظر گرفته شده است که زیرسیستم های موجود در آن ها،
به یکدیگر وابسته هستند و عمل نکردن یک زیرسیستم در عملکرد مطلوب سایر زیرسیستم ها به صورت احتمالی تأثیرگذار است. در مدل
ایستای پیشنهادی این تحقیق، با توجه به احتمالات موجود در حمله ی موفق، ضریب وابستگی زیرسیستم ها، حالت های مختلف عملکرد
سیستم، ساختار قابلیت اطمینان و رویکرد تئوری بازی ها در پیدا نمودن نقطه ی تعادل، یک مدل برنامه ریزی غیرخطی برای تعیین میزان
سرمایه گذاری دفاع و حمل هی تمامی زیرسیستم ها، ارائه شده است. سپس با توجه به نتایج به دست آمده از مدل پیشنهادی ایستا، پویایی
سیستم و مفاهیم نظریه ی تکاملی بازی ها، یک روش جدید و پویا برای تعیین راهبرد های پایدار دفاع و حمله معرفی می شود. با توجه به
الگوی ارائه شده، راهبردهای پایدار تکاملی در طول زمان، از منظر مدافع، مهاجم و کل سیستم، مورد بررسی قرار می گیرند. در نهایت، مدل
ارائه شده ی تحقیق برای یک مثال عددی، استفاده شده و نتایج آن مورد بررسی و تجزیه و تحلیل قرار گرفته است.

کلیدواژه‌ها


1. Yong. W, Gengzhong. F, Nengmin. W, Huigang. L.
(2015). Game of information security investment:
Impact of attack types and network vulnerability. Expert
Systems with Applications , 42(1), 6132–6146.
2. Hausken. K. (2010). Defense and attack of complex and
dependent systems. Reliability Engineering and System
Safety , 95(1), 29-42.
3. Hausken K., He F. (2016). On the Effectiveness of Se-

curity Countermeasures for Critical Infrastructures.
Risk Analysis , 89(1), 39-53.
4. Levitin G., Hausken K., Yuanshun D. (2014). Optimal
defense with variable number of overarching and
individual protections. Reliability Engineering and
System Safety , 123(1), 81–90.
5. Chen Z., Du W.B., Cao X.B., Zhou X.L. (2015). Cascading
failure of interdependent networks with different
coupling preference under targeted attack.
Chaos Solitons & Fractals , 80(1), 7-12.
6. Wu B., Tang A., Wu J. (2016). Modeling cascading failures
in interdependent infrastructures under terrorist
attacks. Reliability Engineering & System Safety,
147(1), 1-8.
7. Li R.q., Sun S.w., Ma Y.l., Wang L., Xia C. y. (2015).
Effect of clustering on attack vulnerability of interdependent
scale-free networks. Chaos Solitons &
Fractals, 80(1), 109-116.
8. Wang J., Wu Y., Li Y. (2015). Attack robustness of cascading
load model in interdependent networks. International
Journal of Modern Physics, 26(3), 78-91.
9. Zhang P., Cheng B., Zhao Z., Li D., Lu G., Wang Y.,
Xiao J. (2013). The robustness of interdependent
transportation networks under targeted attack. Epl ,
103(6), 115-127.
10. Jinhua M., Yanfeng L., Hong-Zhong H., Yu L., Xiao-
Ling Z. (2013). Reliability analysis of multi-state
system with common cause failure based on bayesian
networks. Maintenance and reliability , 15(2),
169–175.
11. Huan Y., Jun Y., Huadong M. (2014). Reliability analysis
of repairable multi-state system with common
bus performance sharing. Reliability engineering and
system safety , 132(1), 90–96.
12. Allen. B, Nowak. M.A. (2014). Games on Graphs:
EMS Survey. Mathematics Science , 340(1), 113–
151.
13. Changhyun. K, Terry. L. F, Reetabrata. M, Tao. Y &
Baichun. F. (2009). Non-cooperative competition
among revenue maximizing service providers with
demand learning. European Journal of Operational
Research , 197(1), 981–996.
14. Gangshu. C, Ned. K. (2009). An evolutionary game
theoretic perspective on e-collaboration: The collaboration
effort and media relativeness. European
Journal of Operational Research , 194(1), 821–833.
15. Gilberto. A.S.S, Renato. A. K, & Rodrigo. C. C. (2012).
A differential evolution approach for solving constrained
min–max optimization problems” Expert
Systems with Applications , 39(1), 13440–13450.
16. Yihui. Q, Zhide. C, & Li. X. (2010). Active defense
model of wireless sensor networks based on evolutionary
game theory. 6th International Conference
on Wireless Communications Networking and Mobile
Computing , PP. 1–4.
17. Jiang. W, Fangbin. X. (2009). Evaluating network security
and optimal active defense based on attack–

defense game theory. Chinese Journal of Computer,
32(4), 44–53.
18. Tullock. G. (1980). Efficient rent-seeking. In: Buchanan
JM, Tollison RD, Tullock G, editors. Toward
a theory of the rent-seeking society. College Station:
Texas A&M University Press, PP. 97–112.
19. Rahimdel. M. M, Amiri. A, & Karbasian. M. (2016).
Optimal strategies for defense of sensitive systems
with false targets and reliability approach. Journal of
Crisis Management , 8(1), 87–96 (in Persian).
20. Fontanini. W, Ferreira.P.A.V. (2014). A game- theoretic
approach for the web services scheduling
problem. Expert Systems with Applications, 41(1),
4743–4751.
21. Zhongping. W, Lijun. M, Guangmin. W. (2014). Estimation
of distribution algorithm for a class of nonlinear
bilevel programming problems. Information
Sciences, 256(1), 184–196.
22. Konak. A, Kulturel-Konak. S, & Lawrence. V. S.
(2015). A game-theoretic genetic algorithm for the
reliable server assignment problem under attacks.
Computers & Industrial Engineering , 85(1), 73–85.
23. Zhide. C, Cheng. Q, & Yihui. Q, Li. X, & Wei. W.
(2014). Dynamics stability in wireless sensor networks
active defense model. Journal of Computer
and System Sciences, 80(1), 1534–1548.
24. Zhenyuan. G, Xingfu. Z. (2015). Impact of discontinuous
harvesting on fishery dynamics in a stockeffort
fishing model. Journal of Communication in
Nonlinear Science and Numerical Simulation, 20(1),
594–603.