نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشیار مجتمع مدیریت و فناوری های نرم دانشگاه صنعتی مالک اشتر

2 دانشجوی دکتری امنیت سایبری-دانشگاه عالی دفاع ملی

3 محقق/ دولتی

چکیده

امروزه به دلیل پیچیدگی‌های فضای سایبری و تأثیرگذاری آن بر بسیاری حوزه‌های دیگر از منظر امنیت ملی نیاز به سیستم پایش با رویکرد روندیابی فضای سایبری و نیز داشتن دید جامع نسبت به همه‌ی ابعاد آن شامل فرهنگی، اجتماعی، سیاسی، اقتصادی، نظامی امنیتی و علم و فناوری بیش از پیش ضروری است. با گسترش سیستم‌های پایگاهی و حجم بالای داده‌های ذخیره شده در این سیستم‌ها، نیاز به ابزاری است تا بتوان داده‌های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد. با توجه به گسترش روزافزون ابزارهای ارتباطی در حوزه‌ی فناوری اطلاعات و ارتباطات و لزوم ایجاد آگاهی اطلاعاتی بر این حوزه با رویکرد جلوگیری از غافل‌گیری در مواجهه با بحران و از سوی دیگر حجم، سرعت و تنوع داده‌های شبکه‌های اجتماعی، لزوم تدوین استراتژی فناوری کلان داده در تحلیل شبکه‌های اجتماعی امری بسیار ضروری است. گفتنی است این مفهوم به جهت تازگی با روش‌های تحلیلی سنتی به هیچ‌وجه قابل اجرا نیست و باید در مواجهه با این حوزه از فناوری‌های نوین بهره برد. از آنجایی که یکی از اصلی‌ترین مباحث در حوزه‌ی کلان داده روش‌های داده‌کاوی برای پالایش داده و دست‌یابی به ارزش افزوده در حوزه‌ی داده‌های عظیم است، در پژوهش حاضر سعی شده است تا فناوری‌های مورد نیاز شناسایی شده و ضمن تحلیل و اولویت‌بندی آن به تدوین استراتژی فناوری کلان داده در تحلیل شبکه‌های اجتماعی برای پیش‌بینی وقوع بحران پرداخته شود. با توجه به موضوع و هدف پژوهش، نوع تحقیق کاربردی - توسعه‌ای1 است. روش تحقیق کمی است و جمع‌آوری اطلاعات از طریق پانل خبرگان و استفاده از پرسشنامه‌ی بسته بوده است و جامعه‌ی آماری نیز تعداد 20 نفر از نخبگان عرصه‌ی فناوری اطلاعات و ارتباطات بوده است و روش تحلیل بهره‌گیری از طیف لیکرت برای ارزش‌گذاری اولویت‌های استراتژی کلان داده بوده است.   

کلیدواژه‌ها

عنوان مقاله [English]

Development of Big Data Strategy in Social Network Analysis toward Prediction of Crisis

نویسندگان [English]

  • Ebrahim Mahmoodzade 1
  • mahdi sahraei 2
  • Mohammad Mehdi Ghouchani Khorasani 3

چکیده [English]

Today , because of the complexities of cyberspace and its influence on many other fields from the  national security viewpoint, the necessity of monitoring systems with cyberspace routing approach and also a global view of all its dimensions, including cultural, social, political, economic, security, military and science and technology seems more urging than ever. With the development of database systems and high volume data stored in these systems, there is a need for an instrument to process these stored data and information obtained from this process and aslo making them available to users. Ever increasing development of the communication tools in the field of information and communication technology, and the need to create intelligence dominance over this area toward prevention of surprises in crises encounterings, and considering the volume, velocity and variety of data in social networks, proves the neccessity for development of Big Data technology strategies in social network analysis. It is worth noting that this concept cannot in any way be dealt with traditional analytical methods and should modern technologies should be utilized instead. Since one of the main topics in the field of Big Data and data mining methods for remediation of achieving added value in the field is massive data, this study tries to identify the analysis and prioritization technologies needed to develop strategies of Big Data technology in social network analysis to predict the occurrence of crisis. According to the subject and objective of the study, type of applied-development research is used. The method of using quantitative methods and information gathering through a panel of experts and questionnaire fill-out, has been applied to a population of 20 elite students in the field of ICT and analysis utilizes big data strategy by means of Likert scale to evaluate priorities.

کلیدواژه‌ها [English]

  • Analysis of social networking
  • big data strategy
  • predicted the crisis
  1.  

    1. Cong, X. & Pandya, K., (2003). Issues of KM in the public sector. Electronic Journal of Knowledge Management, 1(2), 25-33.
    2. کاستلز، مانوئل (1385). عصر اطلاعات: اقتصاد، جامعه و فرهنگ، جلد 1، ظهور جامعه‌ی شبکه‌ای، ترجمه‌ی احد علیقلیان، افشین خاکباز، حسن چاوشیان؛ ویراسته‌ی علی پایا، تهران، طرح نو، چاپ پنجم.
      1. Braun A., Boden M., and Zappacosta M. (Eds.). (2003). Healthcare Technologies Road mapping: The Effective Delivery of Healthcare in the Context of an Ageing Society (HCTRM), JRC/IPTS-ESTO Study.
      2. آراستی، محمدرضا؛ کریم پور کلو، احمد (1385، تابستان). طراحی مدلی برای ارزیابی فناوری در گسترهی شبکهی زنجیرهی تأمین یک بنگاه مادر، چهارمین کنفرانس بین‌المللی و هشتمین کنفرانس ملی مدیریت فناوری، تهران.
        1. Chen, Z. S., Kalashnikov, D. V. and Mehrotra, S. (2009). Exploitingcontext analysis for combining multiple entity resolution systems. In Proceedings of the 2009 ACM International Conference on Management of Data (SIGMOD'09).
        2.  IBM Big data & Analytic Hub, (2016). http://www.ibmbigdatahub.com/
        3. Thompson, J B.: Media and modernity(2013): A social theory of the media. John Wiley & Sons.
        4. Kim, Y., Hsu, S-H., de Zuniga, H.G. (2013): Influence of social network use on discussion network heterogeneity and civic engagement: The moderating role of personality traits. Journal of Communication 63.3, 498-516.
        5. Zhou, L., Ding, L., & Finin, T. (2011). How is the semantic web evolving? A dynamic social network perspective. Computers in Human Behaviour, 27(4), 1294-1302.
        6. Kaschesky, M., Sobkowicz, P., Bouchard, G. (2011). Opinion Mining in Social network: Modelling, Simulating, and Visualizing Political Opinion Formation in the Web.In: The Proceedings of 12th Annual International Conference on Digital Government Research.
        7. E. Letouz_e. (2011). Big Data for Development: Opportunities & Challenges. May 2011.
        8. J. Gantz and D. Reinsel. IDC. (December 2012): The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East.
        9. Aggarwal, C. (2007).  Data Streams: Models and Algorithms.Advances in Database Systems, Vol. 31, 2007, ISBN: 978-0-387-28759-1.

     

    1. عبدالله زاده، احمد؛ معصومی، بهروز؛ آیت­الله زاده شیرازی، محمدرضا (1384). مقدمه­ای بر هوش مصنوعی توزیع شده (معرفی عامل و سیستمهای چندعامله). تهران، انتشارات جلوه، 1384.
      1. Hax, A.C. and No, M. (1992). Linking Technology and Business Strategies: A Methodological Approach and an Illustration. Working Paper, No. 3383-92BPS, Feb.
      2. Khalil, T.M. (2000). Management of Technology – The Key to Competitivenessand Wealth Creation. McGraw-Hill.
      3. محمود زاده، ابراهیم؛ نکویی، فرناز ؛ ابراهیم، محمد باقر (1390). الگوى راهبرد توسعه فناورى با رویکرد هم‌ترازی جهانی شرکت‌ها در کشورهای درحال توسعه. بهبود مدیریت، تهران، سال پنجم، شماره‌ی 1.
      4. ﻣﺤﻤﻮﺩﺯﺍﺩﻩ، ﺍﺑﺮﺍﻫﻴﻢ ( 1385، بهار). ﻣﺪﻳﺮﻳﺖ ﺭﺍﻫﺒﺮﺩﻯ ﻳﻚ ﮔﺎﻡ ﺗﺎ ﺍﺟﺮﺍ. ﻓﺼﻞ‌ﻧﺎﻣﻪ‌ی ﻣﻄﺎﻟﻌﺎﺕ ﻣﺪﻳﺮﻳﺖ، ﺷﻤﺎﺭﻩ‌ی 49، ص ‌39.