توسعه‏ ی شبکه‏ ی لجستیک پیشرو و معکوس در خدمات درمانی در شرایط عدم قطعیت و بحران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علم و فناوری مازندران

2 University of Tehran

چکیده

افزایش جمعیت، تغییر سبک زندگی، افزایش بیماری‏ها و سوانح و حوادث طبیعی و غیرطبیعی موجب اهمیت روزافزون زنجیره‏های خدمات درمانی شده است. از سویی اهمیت خون به‏منزله‏ی ماده‏ای کمیاب و حیاتی برای بشر و خاصیت فسادپذیری شدید و شرایط خاص حمل و نگهداری آن از سوی دیگر مسائلی هستند که در سال‏های اخیر محققان را به چالش کشیده‏اند. اهمیت این حوزه به‏خصوص در شرایط وقوع بحران و کمبود شدید خون می‏تواند دوچندان شود. در این مقاله، یک مدل ریاضی در زنجیره‏ی حلقه‏ی بسته‏ی تأمین خون در شرایط عدم قطعیت ارائه می‏گردد که در آن لجستیک معکوس و شرایط بحران نیز در نظر گرفته می‏شود. با توجه به پیچیدگی در حل مدل پیشنهادی، پس از ارائه‏ی روش دقیق برای اعتباردهی مدل، از تلفیق دو الگوریتم فراابتکاری ژنتیک (GA) و شبیه‏سازی تبرید (SA) استفاده می‏شود. سپس به سنجش اعتبار الگوریتم فراابتکاری تلفیقی در مقایسه با نتایج نرم‏افزار GAMS IDE/Cplex در حل مسائل کوچک، متوسط و بزرگ پرداخته می‏شود و در خاتمه نیز نتایج تحلیل حساسیت ارائه می‍گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Extension of a Forward/Reverse Logistic Network in Health Care under Uncertainty and Disaster

نویسندگان [English]

  • Elham Mansouri 1
  • Mostafa Hajaghaei-Keshteli 1
  • Reza Tavakkoli-Moghaddam 2
1 University of Science and Technology of Mazandaran
2 University of Tehran
چکیده [English]

Population growth, changing lifestyles, increased diseases, and natural and unnatural accidents are the cause of growing importance of health care chains. On one hand, the importance of blood as a rare and crucial stuff and on the other hand, the specific conditions of transportation and maintenance make researchers to be challenged in recent years. The importance of this area especially in a crisis and a severe shortage of blood can be increased. In this paper, a mathematical model of a closed-loop blood supply chain under uncertainty is proposed, in which reverse logistics and emergencies situation are also to be considered. Due to the complexity in solving the proposed model, after proposing accurate method to validate the model, a hybrid algorithm based on genetic algorithm (GA) and simulated annealing (SA) is used. Then, the validation of this hybrid algorithm is evaluated in comparison with the results of GAMS IDE/Cplex software in solving small, medium and large-sized problems. Finally, the results of the sensitivity analysis are presented.

کلیدواژه‌ها [English]

  • Blood Supply Chain
  • Forward/Reverse Logistics
  • genetic algorithm
  • Simulated Annealing
  1. Beliën, J.; Forcé, H. (2012). Supply Chain Management of Blood Products: A Literature Review. European Journal of Operational Research, 217, 1-16.
  2. Pierskalla, W. (2005). Supply Chain Management of Blood Banks. In: M. Brandeau; F. Sainfort; W. Pierskalla (Ed.), Operations Research and Health Care: A handbook of methods and applications,Boston: Kluwer, 103-145.
  3. Arvan, M.; Tavakkoli-Moghaddam, R.; Abdollahi, M. (2015). Designing a Bi-Objective, Multi-Product Supply Chain Network for Blood Supply. Uncertain Supply Chain Management, 3, 57-68.
  4. Jabbarzadeh, A.; Fahimnia, B.; Seuring, S. (2014). Dynamic Supply Chain Network Design for the Supply of Blood in Disasters: A Robust Model with Real World Application. Transportation Research, Part E, 70, 225-244.
  5. Najafi, M.; Eshghi, K.; Dullaert, W. (2013). A Multi-Objective Robust Optimization Model for Logistics Planning in the Earthquake Response Phase. Transportation Research, Part E, 49, 217-249.
  6. Nahmias, S. (1982). Perishable Inventory Theory: A Review. Operations Research, 30, 680-708.
  7. Prastacos, G.P. (1984). Blood Inventory Management: An Overview of Theory and Practice. Management Science, 30, 777-800.
  8. Nagurney, A.; Masoumi, A.H.; Yu, M. (2012). Supply Chain Network Operations Management of a Blood Banking System with Cost and Risk Minimization. Computational Management Science, 9, 205-223.
  9. Nagurney, A.; Masoumi, A.H. (2012). Supply Chain Network Design of a Sustainable Blood Banking System, In: Sustainable Supply Chains: Models, Methods and Public Policy Implications, T. Boone; V. Jayaraman; R. Ganeshan, (Eds.), Springer, 49-72.
  10. Şahin, G.; Süral, H.; Meral, S. (2007). Locational Analysis for Regionalization of Turkish Red Crescent Blood Services. Computers & Operations Research, 34, 692-704.
  11. Sha, Y.; Huang, J. (2012). The Multi-Period Location-Allocation Problem of Engineering Emergency Blood Supply Systems. Safety and emergency. Syst. Eng., 5, 21-28.
  12. حسامی، محمد؛ شیشه‏بری، داود (1394). توسعه‏ی سیاست‏های مکان‏یابی در افق برنامه‏ریزی بلندمدت (مطالعه‏ی موردی مکان‏یابی بیمارستان). مجله‏ی تحقیق در عملیات در کاربردهای آن، شماره‏ی سوم (پیاپی 46)، 69-83.
    1. Rogers, D.; Tibben-Lembke, R. (1998). Going Backwards: Reverse Logistics Trends and Practices, Reverse Logistics Executive Council.
    2. Roghanian, E.; Pazhoheshfar, P. (2014). An Optimization Model for Reverse Logistics Network under Stochastic Environment by using Genetic Algorithm, J. Manuf. Syst., 33, 348-356.
    3. Hatefi, S.M.; Jolai, F. (2014). Robust and Reliable Forward-Reverse Logistics Network Design under Demand Uncertainty and Facility Disruptions. Appl. Math. Modelling, 38, 2630-2647.
    4. Pishvaee, M.S.; Kianfar, K.; Karimi, B. (2010). Reverse Logistics Network Design using Simulated Annealing. Int. J. Adv. Manuf. Technol., 47, 269-281.
    5. Kannan, G.; Soleimani, H.; Devika, K. (2015). Reverse Logistics and Closed-Loop Supply Chain: A Comprehensive Review to Explore the Future. European Journal of Operational Research, 240, 603-626.
    6. Denesiuk, L.; Richardson, T.; Nahirniak, S.; Clarke, G. (2006). Implementation of a Redistribution for Near-Outdate Red Blood Cell Units. Archives of Pathology and Laboratory Medicine, 130, 1178-1183.
    7. Kendall, K.E. (1980). Formulating Blood Rotation Policies for Reducing Blood Wastage in Hospital Blood Banks. Management Science, 26, 1148 -1157.
    8. جمالی، حسین؛ بشیری، مهدی؛ توکلی مقدم، رضا. (1394). بررسی و حل مسئله‏ی امدادرسانی دوسطحی نقاط آسیب‏دیده از بحران. دوفصلنامه‏ی علمی و پژوهشی مدیریت بحران، دوره‏ی 4 (شماره‏ی 2)، 5-22.
    9. ارکات، جمال؛ زمانی، شکوفه؛ قدس، پرک. (1394). مکان‏یابی و مسیریابی تسهیلات اورژانسی با فرض احتمال خرابی مسیرهای ارتباطی در زمان بحران. دوفصلنامه‏‏ی علمی و پژوهشی مدیریت بحران، دوره‏ی 4 (شماره‏ی 2)، 95-106.
    10. بشیری، مهدی؛ بشیری، مهدیه. (1394). طراحی شبکه‏ی زنجیره‏ی تأمین حلقه‏ی بسته با در نظر گرفتن مراکز جمع‏آوری چندبخشی در شرایط عدم قطعیت و حل آن با الگوریتم ابتکاری و فراابتکاری. نشریه‏ی پژوهش‏های مهندسی صنایع در سیستم‏های تولید، سال سوم (شماره‏ی 5)، 27-41.
      1. Hajiaghaei-Keshteli, M.; Aminnayeri, M.; Fatemi Ghomi, S.M.T. (2014). Integrated scheduling of production and rail transportation. Computers & Industrial Engineering, 74, 240-256.
      2. Zimmermann, H.J. (1978). Fuzzy programming and Linear Programming with Several Objective Functions. Fuzzy Sets and Systems, 1, 45-55.
      3. Lin, R.H. (2012). An Integrated Model for Supplier Selection under a Fuzzy Situation. Int. J. Production Economics, 138, 55-61.
      4. Mitchell. M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.