ارزیابی و پهنه ‏بندی امتداد ریزش‏ ها در کوه‏ های طاق علی واقع در شمال شرق شهر کرمان

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 ;رشناس مطالعات و gis /موسسه اموزش و مطالعات مدیریت بحران کرمان

2 دانشیار بخش زمین شناسی دانشگاه شهید باهنر کرمان

3 رییس موسسه مطالعات و آموزش مدیریت بحران کرمان

4 کارشناسی ارشد خاک شناسی

چکیده

در قسمت کوهستانی مشرف به شمال شرق شهر کرمان با کاربری مسکونی ـ تفریحی، تحت تأثیر تکتونیزه‏ی شدید، شاهد پرتگاه‏های گسلی و خطر ریزش سنگ در منطقه هستیم. در زمان ریزش، مشکل اصلی برای عناصر در معرض خطر، محل رسیدن قطعات سنگی است. بنابراین در نقشه‏های پهنه‏بندی حساسیت باید حساسیت مناطق نسبت به رسیدن قطعات را مد نظر گرفت و با بررسی و ارزیابی مسیر طی شده (Run-out) توسط ریزش‏ها پهنه‏های با حساسیت زیاد، متوسط و کم تعیین گردد. بنابراین در ابتدا عوامل مؤثر در ایجاد ریزش شناسایی شد و سپس با دو روش ارزیابی چند معیاره‏‌ی مکانی (AHP) و روش آماری دو متغیره نسبت فراوانی، میزان اهمیت هرکدام از عوامل در منطقه تعیین و نقشه‏ی پهنه‏بندی ریزش‏ها به‏منزله‏ی غالب‏ترین نوع حرکت دامنه‏ای تهیه شد. بیشترین فراوانی ریزش‏های منطقه در دامنه‏های گسلی، جهت‏های شمال غرب و غرب و شیب‏های 15-30 درجه دیده شدند. نقشه‏ی حاصل از روش آماری دربرگیرنده‏ی اکثریت پهنه‏های ریزشی و همچنین دربرگیرنده‏ی مناطقی است که مسیر عبور ریزش‏ها بوده‏اند، اما به دلیل دستکاری دامنه‏های منطقه برای تعیین آخرین محل رسیدن قطعات ریزشی، این نقشه نتوانست اطلاعات کامل را در اختیار بگذارد، بنابراین برای تکمیل نقشه‏ی حساسیت منطقه از رابطه‏های تجربی زاویه‏‌ی رسیدن (Reach Angle) و زاویه‌ی سایه (Shadow Angle)، برای تخمین بیشترین فاصله‏ای که قطعات ریزشی ممکن است طی کنند استفاده گردید. در نقشه‏ی نهایی، جاده‏های تفریحی حاشیه‏ی دامنه در معرض خطر متوسط و مسیرهای کوهنوردی در معرض خطر زیاد شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and Zonation of Run-out Direction of Rock Falls in Tagh-Ali Mountains Located in the Northeastern of Kerman City

نویسندگان [English]

  • zahra hosseini 1
  • ahmad abbasnejad 2
  • Akbar alavi 3
  • Somayehossadat Hosseini 4
1 Kerman Studying and Training crisis Management Center
2 Assistant Professor, Shahid Bahonar University of Kerman
3
4
چکیده [English]

Mountainous regions in the northeastern of Kerman with recreational-residential land use, face severe tectonic activities causing emersion of numerous faulty cliffs, leading to rock fall hazard. When rock fall happens, the main threat posed against exposed elements at risk is to what distance rock pieces will travel, therefore the susceptibility zoning must take into account the region susceptibility to this factor and then through evaluating the run-out of the falls, the zones should be classified into high, medium and low sensitivity. This study tries to prepare susceptibility map as stated earlier. The first step is to identify factors that causes rock fall events, then the importance of each factor in the region has to be determined by using AHP and bivariate statistical method, and finally zoning map of rock falls will be prepared as the most common type of hillside movements. The highest frequency of rock falls in the region have been seen on the faulty slopes, in the N-W and West directions and on 15-30 degrees slopes. The map created by bivariate statistical method contained most rock fall areas and also where rock falls had travels on them, however, due to the manipulation of the region, it is impossible to determine the last place that falling pieces had reached before; so the map does not provide full information. Thus for completing susceptibility map, empirical models such as Reach Angle and Shadow Angle approaches were used to estimate the maximum run-out distance that falling pieces may travel. Based on the final map, recreational roads are at average risk and climbing routes are at high risk.

کلیدواژه‌ها [English]

  • Rock fall susceptibility zoning
  • Reach Angle model
  • Shadow Angle model
  1. حائری، س. م.؛ حاجی علیلو، م. (1384). ریزپهنه‌بندی لرزه‌ای و تهیه‌ی طیف طراحی برای شهرهای بزرگ (شهر تبریز). تهران، بنیاد مسکن انقلاب اسلامی (پژوهشکده‌ی سوانح طبیعی).
  2. مرادی، م.؛ مافی، م. (1385). بررسی پراکندگی زمین لغزش‌های شهرستان زرند پس از زلزله 4 اسفند 1383 داهوئیه، پایگاه ملی داده‌های علوم زمین کشور.
  1. Van Asch Th.W.J., Malet J.-P., van Beek L.P.H., Techniques D., (2007). Advances, Problems and Issues in Numerical Modelling of Landslide Hazard, Amitrano. Bulletin de la SociétéGéologique de France, 178(2), 6-35.
  2.  Hassanzadeh. R., Zorica Nedovic-Budic., Alavi Razavi. A., Norouzzadeh. M., Hodhodkian. H., (2013). Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model). Computers & Geosciences, 51, 324-338.
    1. Berberian M., Jackson J. A., Fielding E., Parsons B. E., Priestley K., Qorashi M., Talebian M., Walker R., Wright T. J., Baker C. )2001(. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophys. J. Int., vol. 146, 371–398.
    2. Keefer. D. K, (2002). Investigating Landslides Caused Earthquakes – A Historical Review. Surveys in Geophysics, 23, 473–510.
    3. Evans. S. G., Hunger. O. (1993). The Assessment of Rock fall Hazard at the base of Talus Slopes. Geological Survey of Canada Contribution 42290, 620-636.
    4.  Ayala-Carcedo F. J.,  Cubillo-Nielsen S.,  Alvarez A.,  Domínguez M. J.,  Laín L.,  Laín R.,  Ortiz G., (2003). Large Scale Rock fall Reach Susceptibility Maps in La Cabrera Sierra (Madrid) performed with GIS and Dynamic Analysis at 1:5,000.Natural Hazards November 2003, Vol 30, Issue 3, pp 325-340 .
    5. Crozier, M. (1999). Landslide, Applied Geography, Principles and Practice, Elsevier, pp83-94.
    6. Sujatha E. R., Rajamanickam G. V., Kumaravel P., (2012). Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India. J. Earth Syst, Sci, 121, No. 5, pp. 1337–1350.
    7. Pourghasemi, H.R. Moradi, M. Mohammadi, B. Pradhan, R.Mostafazadeh, A. Goli Jirandeh H.R. (2012). Landslide Hazard Assessment Using Remote Sensing Data, GIS and Weights-of-evidence Model (South of Golestan Province, Iran), Asia Pacific Conference on Environmental Science and Technology Advances in Biomedical Engineering, Vol.6, 30-36.
    8. Dahl M.-P. J., Mortensen L. E., Veihe A., Jensen N. H., 2010, A Simple Qualitative Approach for Mapping Regional Landslide Susceptibility in the Faroe Islands, Nat. Hazards Earth Syst. Sci., 10, 159–170.
    9. Van Westen C.J., Alkema D., Damen M.C.J., Kerle N., Kingma N.C., (2011). Multi-hazard risk assessment Distance Education Course Guide book, United Nations University – ITC School on Disaster Geoinformation Management (UNU-ITC DGIM).
    10. AGSO (2001). Natural hazards and risk they pose toSouth-East Queenland. AGSO-Geoscience Australia, 389 P.
    11. Moradi M., Bazyar M. H., Mohammadi Z. (2012). GIS-Based Landslide Susceptibility Mapping by AHP Method, A Case Study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2(7), 6715-6723.
    12. Intarawichian N., Dasananda S. )2010(. Analytical Hierarchy Process for Landslide Susceptibility Mapping in Lowwer Mae Chaem Watershed, Northern Thailand, Suranaree J. Sci. Technol. 17(3), 277-292.
    13. Bui D. T., Pradhan B., Lofman O., Revhaug I., Dick O. B., (2012). Landslide Susceptibility Assessment at Hoa Binh Province of VietnamUsing Frequency Ratio Model. Asia Pacific Conference on Environmental Science and Technology Advances in Biomedical Engineering, Vol.6.
    14. Hunger O., Fell R., Couture R., Eberhardt E. (2005). Landslide Risk Management, Taylor & Francis Groupe, London, ISBN 04 1538 043 X.
    15. Copons R., Vilaplana J. M., Linares R. (2009). Rockfall travel distance analysis by using empirical models (Sol`a d’Andorra la Vella, Central Pyrenees). Nat. Hazards Earth Syst. Sci., vol 9, 2107–2118.
    16. Michael-Leiba, M., Baynes, F., Scott, G., Granger, K. (2003). Regional landslide risk to the Cairns community. Natural Hazards, Volume 30, Number 2, October 2003 , pp. 233-249(17).
    17. Ayala, F.J., Cubillo, S., Álvarez, A., Domínguez, M.J., Laín, L., Laín, R. & Ortíz, G. (2003). Large Scale Rockfall Reach Susceptibility Maps in La Cabrera Sierra (Madrid) Performed with GIS and Dynamic Analysis at 1:5,000. NaturalHazards, vol. 30, pp 325-340.
    18. Domaas, U. 1994. Geometrical Methods of Calculating Rockfall Range, Norwegian Geotechnical Institute, Report 585910-1, 21 pp.
  1. حسن زاده، ر.؛ عباس نژاد، ا.؛ علوی ا.؛ شریفی تشنیزی، ا. (1390). تحلیل خطر لرزه ای شهر کرمان با تاکید بر کاربرد GIS در ریزپهنه‌بندی مقدماتی درجه 2. مجله‌ی علوم زمین، سال 21، شماره‌ی 81، 23-30 (23).
  1. زارع، مهدی، (1379). بررسی تلاقی های ساختاری در راستای سیستم های گسله گوک-کوهبنان و زمین لرزههای 1356-1377 ناحیه زرند-گلباف-سیرچ (کرمان)، پژوهشنامه بین المللی زلزله شناسی و مهندسی زلزله.
  2. مرکز مطالعات و مدیریت بحران شهرداری کرمان (1385). گزارش تدوین سناریوی زلزله شهر کرمان فاز دوم: گزارش ارزیابی خطر زمین لرزه، مرکز مطالعات و مدیریت بحران شهرداری کرمان.
  1. اجل لوئیان ر، میرصانعی ر، فاتحی ل. (1392) شناخت و تحلیل کاربردی زمین لغزش.
  2. رهنماراد، ج.؛ یادگارزائی م.ح.؛ کنگی، ع. (1389). پهنه‌بندی خطر زمین لغزش در منطقه‌ی اسکل آباد خاش با استفاده از روش آماری دو متغیره و سیستم اطلاعات جغرافیایی. فصلنامه زمین لغزش کاربردی، سال 6، شماره‌ی4، 257-277.
  1. حیاتی ا.؛ مجنونیان ب.؛ عبدی ا.؛ دسترنج ع.؛ نظری سامانی. ع. ا. (1391). پهنه‌بندی خطر زمین لغزش به منظور استفاده‌ی کاربردی در طراحی شبکه‌ی جاده‌ی جنگلی. نشریه جنگل و فراوردههای چوب، مجله منابع طبیعی ایران، دوره‌ی 65، شماره‌ی‌ 1، 19-32.
  2. رجبی ع. م.؛ مهدوی فر، م.ر.؛  خامه چیان م. (1391). کاربرد مدل نسبت فراوانی در پیش بینی لغزش های ناشی از زلزله منجیل. فصلنامهی زمین شناسی ایران، سال ششم، شماره‌ی 21، 3-13.