ارائه‌ی مدل تهیه‎ی نقشه ی خطر لرزه ای در سیستم اطلاعات مکانی با درنظرگیری عدم قطعیت

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 کارشناس مدیریت بحران

2 دانشیار دانشکده محیط زیست دانشگاه تهران

3 عضو هیات علمی دانشگاه

4 استادیار، دانشگاه صنعتی مالک اشتر

5 استاد گروه مهندسی نقشه برداری و GIS دانشکده نقشه برداری دانشگاه صنعتی خواجه نصیرالدین طوسی تهران

چکیده

کشور پهناور ایران در منطقه ای از پوسته ی زمین قرار گرفته که از دیر باز در اثر آزاد شدن انرژی‌های انباشته شده در آن، همیشه شاهد لرزش‌های بزرگ و مخربی بوده است. از این رو تحلیل مخاطرات طبیعی همواره لازم و ضروری است؛ زیرا بر اساس آن میتوان در تصمیم گیری‌ها و اولویت بندی اقدامات مدیریت بحران، گام‌های اساسی برداشت. هدف اصلی از این مقاله ارائه‌ی مدلی به منظور تحلیل خطر لرزه‌ای بر اساس هر دو خطر اصلی لرزش و شکست زمین است. بر این اساس با توجه به حجم وسیع داده‌های توصیفی و مکانی، سامانه ی نر مافزاری با قابلیت‌های تحلیل و استنتاج مکانی و بر مبنای سیستم‌های اطلاعات مکانی  (GIS) طراحی و توسعه یافت. در این مدل به منظور تحلیل خطر لرزش زمین، از 2 رابطه‌ی کاهندگی موجود برای کشور استفاده می‌گردد، که با توجه به عدم قطعیت‌های موجود در وقوع زلزله (شامل اندازه‌ی بزرگای زلزله، عمق کانونی و موقعیت کانون زلزله)، این عملیات به صورت تصادفی در هر بار انجام تحلیل انتخاب می گردد. خروجی‌ها شامل مقادیر بیشینه شتاب، سرعت و تغییر مکان حداکثر زمین محاسبه می گردد. در مدل ارائه شده به‌منظور تحلیل خطر شکست زمین، بر اساس نوع منطقه و الگوریتم های ارائه شده، 3 خطر ثانوی هی زلزله (روا نگرایی، زمین‌لغزش و گسلش) مورد تحلیل قرار می‌گیرد. در این مرحله با توجه به استعداد روان گرایی و استعداد زمین لغزش می توان تغییر مکان دائمی ناشی از خطرات روا نگرایی و زمین لغزش را برای هر جزء و در هر تکرار شبیه سازی محاسبه نمود. تمامی این گام‌ها بر اساس شبیه سازی مونت کارلو، برای لحاظ نمودن عدم قطعی تهاده هزار بار تکرار می‌شوند و از خروجی‌های موجود در پایگاه داده، میانگین‌گیری می‌شود تا تمامی حالات خرابی در نظر گرفته شود. مدل موجود می‌تواند نقشه‌ی خطر لرزش زمین و شکست زمین را برای هر منطقه تهیه نماید. در این مقاله به منظور نمایش بهتر این پژوهش، مدل موجود برای شهر نیشابور، پیاده سازی و مورد تحلیل واقع گردید که با توجه به سناریوی منتخب، مقادیر PGA برای کل شهرستان بین 0.037g تا 0.48g محاسبه گردید. استعداد روانگرایی شهرستان عمدتاً بین 2 طبقه استعداد کم و متوسط برآورد گردید که استعداد زیاد در شمال غربی شهرستان وجود داشت. استعداد زمین‌لغزش شهرستان، عمدتاً در طبقه ی بدون استعداد ارزیابی گردید. بیشترین تغییر مکان در اثر روان گرایی مربوط به خطر پخش جانبی بود که عمدتاً بین 1 تا 9 اینچ برآورد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Providing a model to prepare map of seismic hazard analysis by using spatial information systems with consideration of uncertainty

نویسندگان [English]

  • Mohammad Eskandari 1
  • Babak Omidvar 2
  • Mahdi Modiri 3
  • Mohammad Ali Nekooie 4
  • Aliasghar AleSheikh 5
3 Assistant Professor
4 Assistance professor, Malek ashtar University of Technology, Tehran, Iran
5 Full Professor
چکیده [English]

Iran is a vast country that has long been an area of the Earth’s crust caused by the release of energy accumulated in it, always large and destructive shake occurs. Therefore, the analysis of natural hazards is essential because it can make decisions and prioritization of actions in crisis management, essential steps to be taken. The main purpose of this paper is to provide a model for seismic hazard analysis based on both main hazard of ground shaking and ground failure. Therefore, due to the large descriptive and location data, Software system designed and developed based on Geo-spatial information system and the ability to analyze the spatial data. This model to analyze the hazard analysis of ground shaking, in two attenuation relationship is used for the country, which according to the uncertainties involved in earthquake (magnitude of earthquake, focal depth and location of epicenter of the earthquake), this operation is selected at random each time and after each hazard analysis, the output of ground shaking (Peak ground acceleration, Peak ground velocity and peak ground displacement) is calculated. In the proposed model to analyze the hazard analysis of ground failure, based on area and proposed algorithms, three secondary hazard of earthquake (liquefaction, landslides and faulting) is analyzed. At this stage, given the liquefaction and landslide susceptibility can be calculated permanent displacement caused by liquefaction and landslide hazards for each component and each iteration of the simulation. All these steps are based on Monte Carlo simulation to considering the uncertainties are repeated 10 thousand times. Then averaging available outputs in the database, so that all failure modes be considered. This model could provide map of ground shaking and ground failure hazard for each parameter. In this paper, in order to get a better view this research, models was implemented and analyzed for the city of Neyshabour. That according to the selected scenario, the values of between 0.037 g to 0.48g PGA was calculated for the city. Liquefaction susceptibility in this city is mostly between 2 category of low and medium susceptibility. There was high susceptibility in the northwestern city. Landslide susceptibility in this city was evaluated mostly on the none susceptibility. Most displacement caused by liquefaction is related to the hazard of lateral spread that was evaluated mostly between 1 and 9 inches.

کلیدواژه‌ها [English]

  • spatial information systems
  • seismic hazard analysis
  • liquefaction
  • landslide
1. World Disaster Report (2002). 185.
2. Bhatia S., M.R. Kumar, H.K. Gupta (1999). A probabilistic seismic hazard map of India and adjoining regions. Annali di Geofisica 42.
۳. حسن زاده، رضا؛ عباس نژاد، احمد ) ۱۳۸۵(. تحلیل خطر لرزه ای شهر کرمان با روش های احتمالاتی و تحلیلی، دهمین همایش انجمن زمین شناسی ایران، تهران، انجمن زمی نشناسی ایران، دانشگاه تربیت مدرس، //: http .html.256_SGSI10-www.civilica.com/Paper-SGSI10
۴. علم یزاده، هیوا؛ هدائی، علی اصغر ) 1388 (. مدیریت بحران در ارتباط با خطر گسلش و زمین لرزه )مطالع هی موردی منطق هی دشت سیلاخور(. فصلنامه ی علمی و
پژوهشی امداد و نجات، شماره ی چهارم، زمستان.
۵. رفیعه، زهرا؛ زارع، مهدی؛ قیطانچی، محمدرضا؛ ملکی، زهرا ) 1390 (. پهنه بندی و تحلیل خطر زمی نلرزه در گستر هی استان لرستان. نشریه ی زمین، بهار 1390 ، دوره ی 6، شماره ی 19 ، 51 - 63.
۶. نجفی، محسن؛ مهرجردی، احمد علی؛ عابدینی، حمیدرضا ) 1392 (. تحلیل خطر لرزه ای به روش احتمالاتی در شهر خورموج، اولین همایش ملی زلزله شناسی و مهندسی زلزله.
۷. عبدا للهزاده، علی؛ اونق، مجید؛ مصطف یزاده، رئوف ) 1392 (. ارزیابی خطر و خسارت ناشی از پدیده ی روا نگرایی خاک، مطالع هی موردی: شهرستان گرگان در استان گلستان، دوفصلنامه ی علمی و پژوهشی مدیریت بحران، شماره ی چهارم، پاییز و زمستان.
۸. ناطق الهی، فریبرز ) 1378 (. مدیریت بحران زمی نلرزه در ایران، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله.
9. Ordaz, M., Aguilar, A., Arboleda, J., (2003). Crisis 2003. Program for computing seismic Hazard, Ver. 3.01.
10. National Planning Scenarios (March, 2006). Created for use in National, Federal State and Local Homeland Security Preparedness Activities.
11. Zaré, M., Bard, P-Y. (1999). Attenuation of Peak Ground Acceleration in Iran, 5th National Conference, France.
12. Ghodrati Amiri, G., Mahdavian, A., Manouchehri Dana, F., (2007). Attenuation Relationships for Iran, Journal of Earthquake Engineering, 11:4, 469-492, DOI:10.1080/13632460601034049.
13. Federal Emergency Management Agency: FEMA (1999). HAZUS 97 Technical Manual. Washington D.C.: Federal Emergency Management Agency.
14. Bray J.D., Sancio, R.B (2006). Assessment of the liquefaction susceptibility of fine grained soils ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132(9), 1165-1177.
15. Juang, C.H, Yang, S.H, Yuan, H., Fang, S.Y. (2005). Liquefaction in the Chi-Chi earthquake – effect of fines and capping non-liquefiable layers Journal of the Japanese Geotechnical Society of Soils and Foundations, Vol. 45 No. 6 pp 89-101.
16. Youd, T. L., Perkins, D. M., (1978). Mapping of Liquefaction Induced Ground Failure Potential, Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, vol. 104, no. 4, 433-446.
17. Liao, S.S., Veneziano, D., R.V. Whitman, (1988). Regression Models for Evaluating Liquefaction Probability. Journal of Geotechnical Engineering, vol. 114, No. 4, April.
18. Seed, H. B., Idriss, I. M. (1982). Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute, Oakland, California, Monograph Series, p. 13. 19. Seed, H. B., Tokimatsu, K., Harder, L. F., Chung, R. M., (1985). Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering, American Society of Civil Engineers, , vol. 111, no. 12, p. 1425-1445.
20. National Research Council, (1985). Liquefaction of Soils During Earthquakes, Committee on Earthquake Engineering, Commission on Engineering and Technical Systems, National Academy Press, Washington, DC.
21. Power, M. S., Dawson, A.W. Streiff, D.W. Perman, R.G., Haley, S. C., (1982). Evaluation of Liquefaction Susceptibility in the San Diego, California Urban Area. Proceedings 3rd International Conference on Microzonation, II, pp. 957-968.
22. Joyner, W.B., D.M. Boore, (1988). Measurement, Characterization, and Prediction of Strong Ground Motion. Proceedings of Earthquake Engineering & Soil Dynamics II, pp. 43- 102. Park City, Utah, 27 June 1988. New York: Geotechnical Division of the American Society of Civil Engineers.
23. Sadigh, K., Egan, J. A., Youngs, R. R., (1986). Specification of Ground Motion for Seismic Design of Long Period Structures. Earthquake Notes, vol. 57, no. 1, p. 13, relationships are tabulated in Joyner and Boore (1988) and Youngs and others (1987).
24. Tokimatsu, A. M., Seed, H. B., (1987). Evaluation of Settlements in Sands Due to Earthquake Shaking. Journal of the Geotechnical Division, American Society of Civil Engineers, vol. 113, no. 8, pp. 681-878.
25. Wilson, R. C., Keefer D. K., (1985). Predicting Areal Limits of Earthquake Induced Landsliding. Evaluating Earthquake Hazards in the Los Angeles Region, U.S. Geological Survey Professional Paper, Ziony, J. I., Editor, pp. 317-493.
26. Wieczorek, G. F., Wilson, R. C. Harp, E. L., (1985). Map of Slope Stability During Earthquakes in San Mateo County, California, U.S. Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500.
27. Makdisi, F. I., Seed, H.B., (1978). Simplified Procedure for Estimating Dam and Embankment Earthquake- Induced Deformations. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, vol. 104, No. GT7, July, pp. 849-867.
28. Wells, D. L. Coppersmith, K. J., (1994). New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, and Surface Displacement. Bulletin of the Seismological Society of America, v 84, pp. 974-1002.
۲۹ فتاحی، مرتضی؛ رستمی مهربان، سمیه؛ طالبیان، مرتضی؛ بحرودی، عباس؛ هالینگورث، جیمز؛ والکر، ریچارد ) 1388 (. بررسی فعالیت گسل نیشابور در استان خراسان. مجله علوم زمین، بهار 90 ، سال بیستم، شماره 79 ، 55 - 60 .
30. Chang, S.E.; Shinozuka, Masanobu, Moore, James E., (2000). Probabilistic earthquake scenarios: extending risk analysis methodologies to spatially distributed systems. Earthquake Spectra .16(3), 557-572.
31. Berberian , M., Yeats, R., (1999), Patterns of historical earthquake rupture in the Iranian Plateau. Bulletein of the Seismological Society of America, 89, 120-139.